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Introduction: A self-gravitational adaptive mesh refine-
ment (AMR) code is newly developed for simulating proto-
stellar collapse and fragmentation of a cloud core.

It is widely accepted that binary and multiple stars form
as a result of fragmentation in a collapsing molecular cloud
core [1]. Fragmentation of a molecular cloud core has been
investigated through numerical simulations by many authors
in the last two decades.

In order to follow the protostellar collapse and fragmen-
tation, extremely wide dynamic range of spatial resolution is
required of a numerical scheme. An initial condition of pro-
tostellar collapse is a molecular cloud core, of which size is
∼ 0.01 − 0.1 pc. On the other hand, a fragment, a seed of a
binary star, has a radius of only∼ 1 AU. Wide spatial dynamic
range of∼ 103−4 is therefore required to resolve both the en-
tire cloud core and the small fragments. Truelove et al. [2]
indicates that sufficient resolution is necessary for avoiding ar-
tificial fragmentation during protostellar collapse calculations
(the Jeans condition). The AMR is one of the most popular
technique to obtain the resolution with wide dynamic range in
the recent simulations [2,3,4,5].

In this paper, implementation of a new AMR code is pre-
sented, and preliminary results with the code is also shown.

Implementation: The AMR code is vectorized and paral-
lized on the supercomputer Fujitsu VPP5000. The MPI library
is used for parallization. The entire code is written in FOR-
TRAN90. The AMR code consists of three parts: (1) grid
generation, (2) hydrodynamics, and (3) self-gravity.

Grid Generation: Block-structured grids are adopted for
grid configuration. Each block hasNx ×Ny ×Nz cubic cells,
whereNx, Ny, andNz denote the number of cells in thex,
y, and z directions, and they are constant over the blocks.
The results withNx = Ny = Nz = 8 are shown here. The
number of cells within a block is fixed, but the cell width differs
depending on the grid-level; the cell width of each grid-level
decreases successively by a factor of 2. The coarsest grid-level
is labeled̀ = 0 (the base grid), and thè-th grid-level has2`

times higher spatial resolution than the coarsest grid-level.
Data is stored by octree structure; the parent (coarse) block

is linked with eight fine (children) blocks. Moreover, a block
is linked with its neighbor blocks.

As a cloud collapses, small structures form in the dense
region. When a block capturing the dense region satisfies a cri-
terion for grid generation, eight finer blocks are automatically
generated from the parent block, obtaining finer resolution.
In the present calculations, the criterion ofλJ/8 < h is em-
ployed, whereλJ andh denote the Jeans length and the cell
width of the parent block. This criterion satisfies the Jeans
condition introduced by Truelove et al. [2].

Hydrodynamics: The hydrodynamics method for the
AMR has been developed by extending the method for a nested
grid [6]. The solver is based on Roe method [7], but has

been extended for solving the ideal, barotropic equations of
state. A MUSCL approach and predictor-corrector method
are adopted here for integration over time in order to achieve
second-order accuracy in space and time. A multi-timestep
scheme is adopted, and all the numerical fluxes are conserved
at the interfaces between the adjacent blocks, and even between
coarse and fine blocks [8].

Self-Gravity: Self-gravity is updated in every time step
across all grid-levels by using the multigrid iteration for the
Poisson equation. The method shows fast convergence of
the solution; a residual reduces by a factor∼ 10−3 by each
iteration. The numerical flux of gravity, which is equivalent
to the gravitational force, is also conserved at the interfaces
between the adjacent blocks, similarly to the hydrodynamics
method described above. This flux conservation means that
a field line of gravity never ends at the interface, leading to
accurate evaluation of gravitational torque [11].

The method consists of three parts: (1) a full multigrid
(FMG) scheme on the AMR grid, (2) V-cycle full approxima-
tion scheme (FAS) on the AMR grid, and (3) FMG for the
base grid. In the first FMG scheme, the solution is converged
simultaneously over the fine and coarse grids (composite grids
corresponding to the hierarchy of grids). The composite grids
are coarsen during the FMG cycle, so that the number of cells
per block decreases fromNx × Ny × Nz to 23. The solution
on these23 cells is converged further by the V-cycle FAS, and
the FMG for the base grid.

Application to Binary Formation: Using the present
AMR code, fragmentation during protostellar collapse is fol-
lowed for the same model as Matsumoto & Hanawa [6]. Fig-
ure 1 shows the initial condition by cross-section. At the
initial stage, the cloud core has density distribution factor of
1.1 denser than that of the critical Bonner-Ebert sphere [9, 10],
and rotates rigidly at angular velocity ofΩ = 0.1t−1

ff , wheretff
denotes the initial freefall timescale at the cloud center and de-
fined astff = (3π/32Gρc)

1/2. The cloud also includes a ve-
locity perturbation ofm = 3 mode with a very small amplitude
(10−3) to break the point symmetry. The initial central density
is ρc = 1 × 10−19 g cm−3, the temperature isT = 10 K, the
radius of the cloud core isRc = 0.144 pc, and the mass of the
cloud isMc = 3.24 M¯. The parameterα(= Eth/|Egrav|)
has been discussed in terms of instability against fragmenta-
tion, whereEth andEgrav are thermal energy and gravitational
energy. The model cloud hasα = 0.765.

A barotropic equation of state is adopted:P = c2
sρ for

ρ < ρcr, andP = c2
sρcr(ρ/ρcr)

7/5 for ρ ≥ ρcr, whereP ,
cs, andρcr denote pressure, isothermal sound speed, and the
critical density for switching the equation of state. We set
cs = 0.19 km s−1, andρcr = 2 × 10−13 g cm−3.

The cloud core undergoes the isothermal runaway collapse
in the early stage, and an adiabatic core forms at the cloud cen-
ter after the maximum density exceeds the critical densityρcr.
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Figure 1: Density distribution in the mid-plane for the ini-
tial condition. The vertical and horizontal lines represent the
block structure (boundaries of the blocks), and each block
contains83 cells. The cloud core is a factor 1.1 denser than
the critical Bonner-Ebert sphere, and rotates at the angular ve-
locity of Ω = 0.1t−1

ff .
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Figure 2: Same as Fig. 1 but for the stage of fragmentation.
The oblate adiabatic core deforms to a ring-shape and then to
a bar-shape. This figure shows grid-level of` = 10−13. Note
that the spatial scale is different form Fig. 1 by magnifying by
a factor of103.

The adiabatic core has an oblate shape; its radius and thickness
are 6 AU and 3 AU, respectively. The oblate adiabatic core
deforms to a ring shape temporarily, and then to a bar shape.
The bar-shaped adiabatic core breaks into two fragments as
shown in Figure 2. The fragments evolve to a proto-binary
system 100 yr after the fragmentation, as shown in Figure 3.
The binary system is surrounded by a circumbinary disk hav-
ing spiral arms. One of the large spiral arms extending out
in the y-direction evolves to an additional adiabatic core be-
cause of self-gravity. The new adiabatic core rotates around
the central binary system, and the whole system becomes a hi-
erarchical triple system as shown in Figure 4. The separation
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Figure 3: Same as Fig. 1 but for the stage of binary formation.
This figure shows grid-level of̀ = 10 − 13.
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Figure 4: Same as Fig. 1 but for the stage of hierarchical triple
system formation. This figure shows grid-level of` = 10−14.

between the central adiabatic cores is∼ 10 AU, while the new
adiabatic core is separated by∼ 30 AU from the central close
system. The orbits of the adiabatic cores seem to evolve in the
further stages as indicated by Matsumoto & Hanawa [6]. The
overall evolution is also consistent with that of Matsumoto &
Hanawa [6].
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