多重星・星団の形成

松本倫明 (法政大学人間環境学部)

連星・多重星形成 観測

連星周期(連星間距離)の頻度分布

Duchêne & Kraus 2013 https://doi.org/10.1146/annurev-astro-081710-102602

Multiple frequency (MF) =
$$\frac{B + T + Q}{S + B + T + Q}$$

Companion frequency (CF) = $\frac{B + 2T + 3Q}{S + B + T + Q}$

 Table 1
 Multiplicity properties for Population I main-sequence stars and field brown dwarfs

		Multiple system/companion		
Category	Mass Range (M_{\odot})	frequency	Mass ratio distribution	Orbital period distribution
VLM/BD	$\lesssim 0.1$	$MF = 22^{+6}_{-4}\%$	$\gamma = 4.2 \pm 1.0$	Unimodal (log-normal?)
		$CF = 22^{+6}_{-4}\%$		$ar{a}pprox$ 4.5 AU, $\sigma_{\log P}pprox$ 0.5
М	0.1-0.5	$MF = 26 \pm 3\%$	$\gamma = 0.4 \pm 0.2$	Unimodal (log-normal?)
		$CF = 33 \pm 5\%$		$\bar{a} \approx 5.3 \text{ AU}, \sigma_{\log P} \approx 1.3$
FGK	0.7-1.3	$MF = 44 \pm 2\%$	$\gamma = 0.3 \pm 0.1$	Unimodal (log-normal)
		$CF = 62 \pm 3\%$		$\bar{a} \approx 45 \text{ AU}, \sigma_{\log P} \approx 2.3$
A	1.5-5	$MF \ge 50\%$	$\gamma = -0.5 \pm 0.2$	Bimodal
		$CF = 100 \pm 10\%$		$ar{P} pprox 10$ days and $ar{a} pprox 350$ AU
Early B	8-16	$MF \ge 60\%$		
		$CF = 100 \pm 20\%$		
0	$\gtrsim 16$	$MF \ge 80\%$	$\gamma^{\log P \le 3.5} = -0.1 \pm 0.6$	Peak + power law
		$CF = 130 \pm 20\%$	$\gamma^{a \ge 100 \mathrm{AU}} = -0.5 \pm 0.1$	$\bar{P} \approx 5$ days and $\alpha \lesssim -1$

Equal-mass binaries are frequent for all binary parameters (mass and separation)

Massive

太陽近傍の太陽型星の連星間距離頻度

サンプル:近隣の太陽型星(G-dwarf) 破線:補正なし 実践:補正あり

Duquennoy & Mayor 1991

PMSとMSにおける連星間距離の頻度分布

3重星は連星2個とカウント

doi:10.1146/annurev.aa.32.090194.002341

Introduction: Binary/multiple star formation is major mode

Binary/multiple depends on stellar masses for MS

Duchêne & Kraus 2013 https://doi.org/10.1146/annurev-astro-081710-102602

MF: fraction of multiple systems CF: average number of companions per target Class | 原始星の連星頻度

Wide binary に超過

超過は進化とともに減少

力学進化の過程で判星の放出

Connelley+ 2008 http://dx.doi.org/10.1088/0004-6256/135/6/2526

星形成領域間の比較

連星・多重星形成 形成理論

• 円盤分裂

- ・星周円盤が分裂して判星を形成
 ・
- ・ 星周円盤が重いとき(中心星が軽いとき)に起こる: M_{disk}/M_{*}
 > 0.1
- · 乱流分裂
 - 乱流が擾乱を作り、ガス雲が分裂する

現状:「円盤分裂と乱流分裂のどっちが正しい?」というテーマが散見される。

円盤分裂と乱流分裂は共存するのでは?排他的ではない。

Disk fragmentation

初期条件:分子雲コア 回転、バーゆらぎ 磁場なし

Matsumoto & Hanawa 2003 doi:10.1086/377367 Vizualization: 4D2U

をサブタイプに分類 Disk Ring-bar type log n [cm⁻³ log n [cm⁻³] <u>t = 0.0000000E+00 [yr]→ = 1.00</u> $t = 0.0000000E + 00 [yr] \rightarrow = 1.00$ #3 4.4 4.4 #3 2×10⁴ 初期条件:分子雲コア 2×10⁴ 4.2 4.2 回転、バーゆらぎ 1×10^{4} 1×10^{4} 磁場なし 4.0 4.0 ζ 0 3.8 3.8 -1×10⁴ -1×10⁴ 3.6 3.6-2×10⁴ -2×10⁴ Matsumoto & Hanawa 2003 z [AU] 3.4 z [AU] #3 3.4 #3 doi:10.1086/377367 -2×10^{4} -1×10^{4} $1 \times 10^{4} 2 \times 10^{4}$ $-2 \times 10^4 - 1 \times 10^4$ $1 \times 10^4 2 \times 10^4$ п 0 X [AU] x [AU] Disk bar type Satellite type log n [cm^{-3.} log n [cm⁻³] log n [cn $t = 0.0000000E + 00 [vr] \rightarrow = 1.00$ t = 0.0000000E+00 [vri-> = 1.00 t = 0.0000000E+00 [vr]→ = 1.00 4.4 4.4 4.4 #3 #3 #3 2×10⁴ 2×10⁴ 2×10⁴ 4.2 4.2 4.2 #4 #4 1×10⁴ 1×10^{4} 1×10^{4} 4.0 4.0 4.0 0 Т 3.8 3.8 3.8 -1×10⁴ -1×10⁴ -1×10⁴ 3.6 3.6 3.6 -2×10⁴ -2×10⁴ -2×10⁴ z [AU] 3.4 3.4 z [AU] z [AU] 3.4 #3 #3 #3 $-2 \times 10^4 - 1 \times 10^4$ $-2 \times 10^4 - 1 \times 10^4$ $1 \times 10^{4} 2 \times 10^{4}$ $1 \times 10^{4} 2 \times 10^{4}$ $-2 \times 10^4 - 1 \times 10^4$ $1 \times 10^4 2 \times 10^4$ 0 0 0

x [AU]

x [AU]

Disk fragmentation

14

x [AU]

回転円盤の安定性

回転している無限に薄い一様な円盤を考える

分散関係

$$\omega^2 = k^2 c_s^2 - 2\pi G \Sigma |k| + \kappa^2$$

Epicyclic frequency (動径方向の振動数)

$$\kappa^2 = R \frac{d\Omega^2}{dR} + 4\Omega^2$$
剛体回転 $\Omega = \text{const.}, \ \kappa = 2\Omega,$ 回転速度一定 $\Omega \propto R^{-1}, \quad \kappa = \sqrt{2}\Omega,$ ケプラー回転 $\Omega \propto R^{-3/2}, \quad \kappa = \Omega,$

k についての2次方程式なので、こう変形する

$$\omega^2 = c_s^2 \left(k - \frac{\pi G \Sigma}{c_s^2} \right)^2 + \kappa^2 \left[1 - \left(\frac{\pi G \Sigma}{c_s \kappa} \right)^2 \right]$$

回転円盤の安定性

臨界ジーンズ波長とToomore Q-パラメータ

Turbulent fragmentation, w/ radiation, w/o B-field

Bate+ 19 doi:10.1093/mnras/stz103

 $Z=Z_{\odot}$

Matthew Bate University of Exeter

0 yr

Turbulent fragmentation, w/ radiation, w/o B-field

Bate+ 19 doi:10.1093/mnras/stz103

•

連星形成のメカニズムは様々

近接連星 (s < 10 au, M₁ = 0.1 – 1.5 M_☉)の形成メカニズムの分類

Metallicity	Numbers of close binaries formed by various formation mechanisms					
(Z_{\bigodot})	Separate-SD	Filament-SD	Exchange	Filament-Network	Disc-Frag	
0.01	3*	7	4*	0	5*	17
0.1	10	4	3*	0	3*	19
1	2*	12	1*	6	5	25
3	7	2	7	0	0	16

Separate-SD: 別々のコア/フィラメントで形成し、星-円盤相互作用で連星に

Filament-SD: 同じフィラメントで形成し、星-円盤相互作用で連星に

Exchange: 多重星系同士が相互作用

Filament-Network: フィラメントネットワークで分裂し、力学相互作用で近接連星に Disc-Frag: 円盤分裂

> Bate+ 19 doi:10.1093/mnras/stz103

Disk fragmentation in turbulent fragmentation w/ very high resolution.

These simulations reproduce large disks and fragmentation even for initial strong B-fields.

No magnetic braking catastrophe!

Wurster, Bate, Price 19 doi:10.1093/mnras/stz2215

ALMA reveals diversity in binary/multiple formation (turbulent fragmentation)

Credit: ALMA (ESO/NAOJ/NRAO), Lee et al., ESA/Herschel/PACS

Lee+ 2017 https://doi.org/10.1038/s41550-017-0172

Credit: ALMA (ESO/NAOJ/NRAO)

ALMA reveals diversity in binary/multiple formation (disk fragmentation)

ALMA reveals diversity in binary/multiple formation (disk fragmentation?)

BHB07 11 in B59 core ALMA 1.3 mm Alves+ 19 (Science)

 $2\sim 3.9$

Gravitationally stable. Filaments are due to dynamical interaction btw stars and disk

Diversity: Observed asymmetry in CBDs

若い連星系の構造;2重の円盤構造

事例 原始連星系 L1551NE

L1551 NE: 原始連星 (質量降着中)

-

総事業費1000億円 国際協力(米欧日)

Takakuwa+ 14

スーパーコンピュータ ATERUI

@国立天文台 水沢キャンパス

31

Takakuwa+ 14

AMR(適合格子細分化法)による高解像シミュレーション

観測と理論の比較

Takakuwa+ 14

35

無限に性能が良い望遠鏡を仮定

36

Takakuwa+ 14

✓ ギャップは本物
✓ 渦巻きの特徴を示す速度を検出
✓ 連星への落下を示す速度を検出

ALMA望遠鏡でシミュレーション結果を観測したらこうなるはず

37

ケプラー回転からの残差(C18O 観測)

視線速度(モーメント1)

円盤の速度分布(理論)

-1.0

Vľ

400

200

0

-200

-400

-400

y [AU]

速度

色:

まとめ 理論と観測が 直接比較可能。 新しい時代の到来。 ・周連星円盤の渦巻きをはじめて検出 ・連星へのガスを落下を検出

連星円盤に渦を観測

Vortex produces asymmetry in CBD

Time average btw 80-100 rev in the rotating frame with Ω_p (rotation wit

Gravitational torque

- ⇒ j increases
- ➡ exchange radial position
- ➡ vortex
- → density bump (e.g., RWI)
- ➡ asymmetry

Centrifugal radius with Ω_p

(注釈)もっと低温な場合には secular mode による非 対称性が知られれている (Munoz & Lithwick 20)。

> Matsumoto+ 19 doi:10.3847/1538-4357/aaf6ab

Velocity structure: infall & expansion

Temporal average in rotation frame

周連星円盤が落下?膨張?完全に理解した!

Non-axisymmetric pattern 1 rev. when binary stars 4 rev (commensurability)

Non-axisymmetric pattern

х

47

論争があった! (Bate & Bonnell 1997, Young+ 2015, Ochi+ 2005, Hanawa+ 2010)

星団形成

· 大質量星形成領域

- 集団的星形成
- 大質量~小質量の星が形成
- OB型星のフィードバック(UVなど)

。 例:オリオン分子雲

小質量星形成領域

- 孤立的星形成
- 「静かな」星形成例:おうし座分子雲

集団的星形成・星団形成の特徴

- ・材料となるガスをどのように集めるか?
 - ゆっくり集めると、集めている間に孤立的星
 形成が起きてしまう。
 - 。短い期間に集める必要がある。
 - ➡ 分子雲の衝突が提案されている。
- ・星からのフィードバックで分子雲が散逸 する。
 - 。紫外線による加熱→散逸

星団形成シミュレーション

- AMR
- 自己重力
- 乱流
- 紫外線

^{10¹⁶} Fukushima+ 2020 doi:10.1093/mnras/staa2062 53

星団形成シミュレーション

 $(M_{\rm cl}, R_{\rm cl}, Z) = (10^5 \text{ M}_{\odot}, 20 \text{ pc}, 1Z_{\odot})$

Fukushima+ 2020 doi:10.1093/mnras/staa2062

 10^{2}

 $\Sigma [M_{\odot} \,\mathrm{pc}^{-2}]$

10-2 Zo

 10^{0}

0

 10^{1}

衝突があると星形成が活発に

Matsumoto+ 2015 doi:10.1088/0004-637X/801/2/77

分子雲の衝突で星団形成

速度の異なる分子雲が 相補的な空間分布

➡衝突の証拠

Fukui+ 2020 doi:10.3847/1538-4357/aac217

この分野で残された話題

・ 連星形成シナリオ

- 乱流分裂 vs 円盤分裂。二項対立なのか?現状は理論研究が主導。
- 観測的には円盤分裂が多い。
- ・ 連星形成の高い頻度
 - 磁場によって円盤分裂が抑制されてしまう
- 連星パラメータの起源
 - 質量比、連星間距離、軌道離心率…
 - 多様性の起源
 - ブラックホール連星、重力波イベントと関連
- ・ 連星における惑星形成・連星円盤におけるダスト進化
- 分子雲の衝突による星団形成
 - ◎ 黎明期だが有力。銀河円盤スケールの理解。
- 星団形成における星形成フィードバック
 - 銀河形成と関連。金属量依存性