## AMR

#### 松本倫明 (法政大学人間環境学部)







## 分子雲コア→ファーストコア→原始星





- 適合格子細分化法 (Adaptive Mesh Refinement; AMR)
- · 解適合格子(Solution Adaptive Mesh)

### ・骨子

- 高解像度が必要な領域を高解像度に。
- 。 それ以外を低解像度に。
- · 「高解像度が必要な領域」を動的に変更する。
- トータルで格子点数を節約する。
- 計算機性能の割に、高解像なシミュレーションが可能。
  例:256^3 → 10 level, (256\*1024)^3=(1.80144e+16)^3







#### 連星系の形成

星の運動とともに 格子を動的に更新する。

# AMRを使う目的

- 自己重力による構造形成:
  - ◎ 形成される天体を分解したい。
  - 空間スケール∝密度<sup>-1/2</sup>
- ・ 惑星間空間のプラズマ:
  - カレントシートを分解したい。
- 超新星爆発:
  - 燃焼波(デトネーション・デフラグレーション)を分解したい。
- 乱流:
  - パワースペクトルを長いレンジで書きたい。
- つまり、ダイナミックレンジが欲しい。
- ・ 格子点数の割りに高解像度が欲しい。

### 自己重力系のシミュレーションにはAMR

- 自己重力系: 大きさはジーンズ長
  - 。 収縮すると小さくなる
- ・ 一様格子では破綻
- AMR、SPH、非一様格子を導入
- SPHを勧めない理由
  - 質量~ジーンズ質量(どんどん小さくなる)
  - いずれSPHが破綻
- ・非一様格子を勧めない理由
  - 形成する天体の位置は決まっていない。
    (決まっていれば非一様格子でもOK)

### なぜAMRか。 ハードウェア vs ソフトウェア





#### Local Adaptive Mesh Refinement for Shock Hydrodynamics

#### M. J. BERGER

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, 10012 New York

#### AND

#### P. COLELLA



## AMRの分類

#### Level = $0 \sim 2$

#### A) パッチ型ブロック構造格子

- 。 パッチ指向
- 。 最初のAMR
- Berger & Oliger 1984,
- Berger & Colella 1989

# B) 八分木型ブロック構造格子 ○ 八分木構造

#### C) セル分割型格子

• 八分木構造

#### D) 三角形非構造格子

- 。 天文学ではあまり用いられていない
- 機体に沿った境界条件に有利。





AMRの分類

#### Level = $0 \sim 2$

#### A) パッチ型ブロック構造格子

- セル数は少なめ。
- ブロック配置のアルゴリズムが複雑。
- ◎ 袖のセルが少なく、効率が良い。
- 。 メモリを動的に使う。

#### B) 八分木型ブロック構造格子

- セル数多め。
- ブロック配置のアルゴリズムが単純。
- 袖のセルが多くい。
- メモリを静的に使う。
- キャッシュの有効活用。

#### C) セル分割型格子

- 。 セル数は必要最低限。
- オーバーヘッドが大きいか?
- ◎ 一様格子ソルバの流用不可。















### 八分木型ブロック構造格子



### 天体物理学における主なAMR (古いかも?)

ほかにも沢山。国内にも下記以外に2コード存在。

現在では、MHD と 自己重力は 多くのAMRに実装されている。

| ſ         |                           |                |           |              |              |
|-----------|---------------------------|----------------|-----------|--------------|--------------|
| Code name | Author(s)                 | Main targets   | Grid type |              |              |
| ORION     | R. Klein                  | Star formation | А         |              |              |
| Enzo      | M. Norman                 | Cosmology      | А         |              |              |
| FLASH     | ASC/U-<br>Chicago         | Any            | В         |              |              |
| BATS-R-US | K. G. Powell              | Space weather  | В         | <br>(A) パッチ型 | (B) 八分木型     |
| NIRVANA   | U. Ziegler                | Any            | В         |              | ブロック構造格子     |
| RIEMANN   | D. Balsara                | ISM            | А         |              |              |
| RAMSES    | R. Teyssier               | Cosmology      | С         |              |              |
| CASTRO    | A. S. Almgren<br>CCSE.LBL | Supernovae     | А         |              |              |
| PLUTO     | A. Mignone                | Any            | А         |              |              |
| Athena++  | J. Stone                  | Any            | В         | (C) セル分割型格子  | (D) 三角形非構造格子 |
| SFUMATO   | T. Matsumoto              | Star formation | В         | Limitea Y Y  | IN Y 15      |

# 二重マッハ反射問題みるタイプ別の解











SFUMATO 0.2 Matsumoto 2007 0.0 doi:10.1093/pasj/59.5.905.0





標準的な衝撃波のテスト問題だが、原爆に応用された。

NHKスペシャル 知られざる衝撃波~長崎原爆・マッハステムの脅威~



# 我々のAMRコードSFUMATOの紹介

Self-gravitational Fluid-dyna Utilizing Mesh Adaptive Tec Oct-tree.

- Sfumato は本来、絵画の技 オナルド・ダ・ビンチ (14 1519) によって完成された
- その後、ルネサンスーバロ
  多くの画家に用いられた。
- モチーフの輪郭をぼかし、

空気を表現。

我々のAMRコードも

ガス(空気)を表現。

Matsumotoのアナグラムではない。



# AMRコード SFUMATO の構成



# 天文学における例

# AMRが当たり前の時代になった。

- AMRは特別ではなくなった。
  自己重力系のメッシュ法では必須
- ・独自性の担保:
  - 。新しい物理を導入して勝負 。新しいアイディアのモデルで勝負
- AMRの計算例を紹介する。

### 乱流コアでの多重星形成 ORION: 流体+自己重力+輻射



### Krumholz, Klein, & McKee (2007



### First star formation by Enzo Abel et al. (2003)

Block-structured grid (patch-oriented type)





6 kpc ⇒ 100 AU (1,2000倍)



### BATS-R-US (K. G. Powell) Space Weather

#### Block-structured grid (oct-tree type)



### Coronal Mass Ejection by BATS-R-US Manchester IV et al. (2004)



#### 太陽圏シミュレーション Matsumoto+ doi:10.1088/1742-6596/1225/1/012008



### FLASH (ASC, U-Chicago) Rayleigh-Taylor Instability

#### Block-structured grid (oct-tree type)



time





### 本当にAMRが必要ですか?

SMR/FMRで十分なのでは?

### 格子の<mark>貼り替え</mark>の悪さ

細かくする

高次のノイズ発生 エントロピーの減少

運動エネルギーの熱化 粗くする

# FMR/SMRの使用例

#### Matsumoto+ 19 doi:10.3847/1538-4357/aaf6ab



-10

-5

0

х

5

10



# FMR/SMRの使用例

Athena++ を用いたSMR

### $\Delta r_{i+1} / \Delta r_i = 1.007$



Takasao+ 2018 doi:10.3847/1538-4357/aab5b3

# 定説と実際



#### 質量・運動量・エネルギーが保存するように細分化と結合



 $\rho \vec{v}$  は保存するが、 $|\rho \vec{v}|^2$ は保存しない。 全エネルギー ( $E_{\rm K}+E_{\rm th}$ ) は保存する。 運動エネルギー( $E_{\kappa}$ )が熱エネルギー( $E_{th}$ )になる。 人為的な加熱に相当する。





 $AMR \exists - k :$ Enzo 解法:PPM 細分化比: 4 超音速乱流のシミュレーション 面密度分布(視線方向に積分)

### Kritsuk et al. 2006




超音速乱流ではOK 亜音速乱流は微妙





### Kritsuk et al. 2006 37

## 密度のPDF (確率分布関数) AMRと一様格子の比較



超音速乱流ではAMRは有効(衝撃波の補足) 亜音速乱流では不向き(渦の補足)



## AMRをちゃんと作れば <u>「波は反射しない」という「誤解」</u>



#### 保存形式で解いているけど波のエネルギーはどこへ? → 反射するしかない

## Convergence test for MHD Alfven wave



紙面に垂直な vとBが振動する sin波

## しかし、波は境界で反射する。 Fast wave の反射実験。







AMR h = 1/32, 1/16



波は境界で反射する。 AMRでは減衰が少ない。







**AMR** h = 1/64, 1/32

一様格子 h = 1/32

格子が細かくなると 反射は少なくなる。



٧v

2×10<sup>-6</sup>

1×10<sup>-6</sup>

-1×10<sup>-6</sup>

-2×10<sup>-6</sup>

0



**AMR** h = 1/128, 1/64

一様格子 h = 1/64

## 格子が細かくなると、 ほとんど反射は目視できない。







AMR h = 1/256, 1/128

## 反射してもスキームの精度を達成する。

2次精度 @ h << 1

#### SFUMATO







## AMRコードを作るか作らないか

作る場合

- 利点: 新しい物理の導入が容易。
- ・ 欠点: 膨大なテスト計算の必要性。

   開発時間の必要性
- ・ 開発期間: 流体(MHD)を「書く」だけなら数ヶ月間。
  - ◎ 流体部分はラク。松本は流体部分を2週間で集中的に書いた。
  - 自己重力部分の開発は苦労した。
  - 可視化にも苦労した。一番苦労した?
- ・ 効率よく開発するには
  - 流体などの既存のソルバを流用する。
  - はじめから3次元版を作る。
  - はじめから並列版を作る。
  - 既存のAMRライブラリ(paramesh, chombo)を利用するのも一考かと。

## AMRコードを作るか作らないか

作らない場合

- 既存の公開コードを利用する。
   現在の主流になりつつある。
   シミュレーションコードの複雑化が原因。
- ・ 利点: 手軽に利用できる。開発の不要(テスト計算は必要)。
- ・ 欠点: 改造の困難さ。新しい物理を導入する場合に苦労する。
- アイディア勝負の場合(隙間産業)は、作らない方が良いと思う。
- 開発者と共同研究する。
  - ブレイクスルーの仕事では、開発者が共同研究者であることが多い。

## AMRコードとその他のコードの比較

| コード種別 | 3dhd                        | Nested grid                   | AMR                                    |
|-------|-----------------------------|-------------------------------|----------------------------------------|
| 行数    | 3,524<br>(自動生成後<br>6,994)   | 14,037                        | 58,822                                 |
| 言語    | Fortran77 + Perl<br>コード自動生成 | Fortran77 + 自作<br>cpp         | Fortran90                              |
| 並列化   | VPP Fortran<br>指示行の挿入       | なし/自動並列<br>指示行の挿入             | MPI並列                                  |
| バージョン | -                           | 2.12                          | -                                      |
| 実装機能  | 流体, 自己重力                    | HD, MHD, registivity,<br>自己重力 | HD, MHD, 自己重力,<br>registivity, sink 粒子 |



## AMR格子における解法

- ・ ブロック構造格子
  - ブロック自体は普通の一様格子。
  - 粗細(親子)ブロックの関係(時間的・空間的)を工夫する。それだけ!
- · 流体·MHD (双曲型偏微分方程式)

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} + \frac{\partial H}{\partial z} = S$$

- 基本コンセプトは Berger & Colella (1989) に尽きる。
- TVD, Roe法, HLLD法, predictor-corrector 法 (時間空間2次精度)
- MHDでは、∇・B の処方箋に複数の流儀がある。一長一短。
- · 自己重力(楕円型偏微分方程式)

$$\nabla \Phi = 4\pi G\rho$$

- AMRと相性が良いのはマルチグリッド法。
- お勧め参考書「MULTIGRID」 Trottenberg et al. (2001)
- 拡散方程式(放物型偏微分方程式)
  - 楕円型偏微分方程式と同じ

$$\frac{\partial U}{\partial t} = \kappa \nabla^2 U$$

## 時間発展

## 双曲型方程式の解法:

## 2種類の時間発展

・ 適合時間刻み (adaptive time step)

- 空間だけでなく、時間も細分化する。
- 。 親のタイムステップ≧子のタイムステップ

CFL条件  $\Delta t < \frac{\Delta x}{-}$ V

- C.f., Berger & Cole I la (1989)
- 自己重力なしの場合
- ・ 共通時間刻み (common time step)
  - 全てのグリッドレベルが同じタイムステップを持つ。
  - 自己重力系、輻射流体の場合 (長距離相互作用)

## 2種類の時間発展



(a) 適合時間刻み





独立時間刻は適合時間刻みより自由度大  $\Delta t^{\ell} = \Delta t^{\ell-1} 2^{-n}$  (ただし $n = 0, 1, 2, \cdots$ )  $\Delta t^{\ell} \leq \Delta t^{\ell}_{CFL},$ 右図の例:⑤で時間ステップを半分

## 適合時間刻み vs 共通時間刻み

#### 適合時間刻み

もっとも細かいグリッドレベルが1ステップ進むためのコスト 親のグリッドレベルは1/2ステップ 祖父のグリッドレベルは1/4ステップ

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{l_{\max}}} = \sum_{l=0}^{l_{\max}} \frac{1}{2^l} \approx 2 \quad (l_{\max} >> 1)$$

合計で2倍コストがかかる

#### <u>共通時間刻み</u>

もっとも細かいグリッドレベルが1ステップ進むためのコスト 親のグリッドレベルも1ステップ 祖父のグリッドレベルの1ステップ

$$1 + 1 + 1 + \dots + 1 = \sum_{l=0}^{l_{\max}} 1 = l_{\max} + 1 \approx l_{\max} \quad (l_{\max} >> 1)$$

#### 合計で段数倍コストがかかる

特別な理由がない限り、adaptive time step を採用するべき。 特別な理由の例:自己重力、輻射

## 双曲型方程式の解法;細粗ブロックの境界

- 粗いブロックと接する細かいブロック
  - 粗いブロックを時間的に空間的に補間し、細かいブロックの境界条件に セット。
- ・ 細かいブロックと接する<mark>粗いブロック</mark>
  - ◎ 細かいブロックの数値流速を使って、時間発展。



## 細粗境界での数値流束の保存

Matsumoto 2007 doi:10.1093/pasj/59.5.9 05



## 時間推進の方法

- 1. 時間を進めるべきレベルを探 す。
  - a. もっとも時間が進んでいない レベルのうち、もっとも粗い レベル。
- 時間刻み幅dtを求める。
   a. レベル0はクーラン条件から。

  - b. それ以外は親のdtの半分
- 3. 境界条件の設定
  - a. 兄弟ブロックからコピー。
  - b. 親ブロックから時間・空間的 に内挿。
  - c. ユーザの境界条件。

- 通常の方法で時間推進する。
   a. たとえば、predictorcorrector 法など。
- 5. 親レベルと同期した場合:
  - a. 自分の解を親セルに代入する。
  - b. 隣接する親セルの値を修正す る(数値流束保存)。
- 6. 同期している全てのレベルを 用いて細分化をする。  $l_{sync} ~ l_{max} - 1$ を細分化して、  $l_{sync} + 1 ~ l_{max}$ を生成する。  $l_{sync} = 同期している最粗レベル$



## 初期







親:予測ステップ



















## コードの詳細: 流体部分 数値流束補正・マルチタイムステップ



## コードの詳細: 流体部分 数値流束補正・マルチタイムステップ



## コードの詳細: 流体部分 数値流束補正・マルチタイムステップ



## コードの詳細: 流体部分 <u>数値流束補正・マルチタイムステップ</u>



## コードの詳細: 流体部分 <u>数値流束補正・マルチタイムステップ</u>





## コードの詳細: 流体部分 <u>数値流束補正・マルチタイムステップ</u>





# 細分化

## 細分化条件: どこを細分化するべきか?

- 何を見たいかに依存する。
- 打切り誤差が閾値を超える部分を細分化 (Berger & Colella 1989)
- ・物理量の2階微分が閾値を超える部分を細分化 (Flash など)
- ・星形成分野の業界標準
  - Jeans 条件: Jeans 波長を4メッシュ以上で分解する (Truelove et al.)
  - 。 最近は8や16メッシュが多い。
# 細分化のアルゴリズム

- 1. 細分化するセルの探査
  - a. レベル*l* に属するセルを 順に探査し、細分化条件を 満たすセルに印をつける。
  - b. 印がついたセルの周囲のセ ルにも印をつける。
  - C. レベル *l*+2 にブロックと 重なるセルにも印をつける。

- 3. ブロックの生成
  - a. 当該セルがすでに細分化さ れていれば、その値をコ ピーする。
  - b. 新たに細分化する場合には、 レベル*l*の値を内挿する。
- 4. 古いブロックの破棄

- 2. ブロック配置の決定
  - a. 印がついたセルを含むよう にレベル *l* + 1 のブロック を作る
- 5. 手順1~4を同期している レベルで行う。
  - a. 粗いレベルから細かいレベ ルの順に繰り返す。

以下、Type A の例を示すが、Type B でもブロックの決め方以外は同じ。

細分化のアルゴリズム レベル0を細分化してレベル1を生成





|  |  | 、ベ | ル1 |    |    |
|--|--|----|----|----|----|
|  |  |    |    |    |    |
|  |  |    |    |    |    |
|  |  |    |    |    |    |
|  |  |    |    | レベ | ルロ |
|  |  |    |    |    |    |
|  |  |    |    |    |    |

### 1. レベル0のセルに注目する。





### 1-a. レベル0の細分化。 レベル0のセルに対して細分化条件を評価する。









### 1-c. レベル0の細分化。 レベル2と重なるセルにも印をつける。





### 2. レベル1のブロック配置を決定。 ここはいろいろな流儀がある。





3-a. ブロックの生成。 既存のセルの値をコピー。





### 3-b. ブロックの生成。 レベル0から内挿。





81

### 4. 古いブロックを破棄して完成。



|  |  |  | _    |  |  |
|--|--|--|------|--|--|
|  |  |  | <br> |  |  |
|  |  |  |      |  |  |
|  |  |  |      |  |  |

82





### パッチ指向AMRには様々な流儀が存在する。 たとえば、

| <br> | - | <br> | <br> | <br> | - | <br> |
|------|---|------|------|------|---|------|
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |
|      |   |      |      |      |   |      |





### 印がついたセルをすべて覆うブロックを考える







### セル数のヒストグラムを書き、最小値部分でブロックを分割する。







### 余分な部分を取り除く









### 別の方向からセル数のヒストグラムを書き、分割する。





### 余白を取り除く。



こんなことを繰り返してゆく。

この操作を繰り返すほど、ブロックは小さくなる。 ブロックの最小サイズを決めておこう。

## とっても面倒です



### Matsumoto 2007 doi:10.1093/pasj/59.5.905

# を採用しよう!



# 自己重力 マルチグリッド法

# マルチグリッド法





図 4.1 マルチグリッド法における階層的な格子。2 次元の 例を示す。65<sup>2</sup> のグリッドの重力ポテンシャルを求めるとき、 33<sup>2</sup>...3<sup>2</sup> の作業グリッドを用意する。下段の図では、未知数を 定義するグリッドポイントを黒丸で、境界条件を定義するグリッ ドポイントを白丸で示す。



#### 様々な解像度の格子を準備 様々な波長の誤差を高速に収束させる

図 4.2 有限体積法に適したマルチグリッド法における階層的 な格子。2 次元の例を示す。64<sup>2</sup> のグリッドの重力ポテンシャル を求めるとき、32<sup>2</sup>...1<sup>2</sup> の作業グリッドを用意する。中断と下 段の図では、未知数を定義するセル中心を黒丸で、境界条件を 定義するセル境界を白丸で示す。 一様格子におけるマルチグリッド法





演算回数 ∝ 実格子のセル数



Matsumoto 2007 doi:10.1093/pasj/59.5.905

Fig. 5. Schematic diagram of the coarsening of grids in the multigrid method. The cell-boundaries and block-boundaries are denoted by thin and thick lines, respectively. (a–c) Coarsening of grids in the FMG-cycle on the AMR hierarchy. The number of the cells per block decreases up to  $2^3$ . (d–f) V-cycle on the AMR hierarchy. The solution converges sequentially on the hatched blocks. (g–i) Coarsening of grids in the FMG-cycle on the uniform base grid.

AMRへの応用:すぐに思いつくがダメな例







1. レベル0の解を求める 2. レベル0を境界条件にして 3. レベル1を境界条件にして レベル1の解を求める レベル2の解を求める

### なぜダメか?

### 正負の電荷が作る静電場を求めなさい。 (自己重力と同じPoisson 方程式の解)



AMRへの応用:すぐに思いつくがダメな回







1. レベル0の解を求める 2. レベル0を境界条件にして 3. レベル1を境界条件にして レベル1の解を求める レベル2の解を求める

電荷がメッシュで分解でき 電荷が分解できた。 ない。

電荷ゼロ。

答

電場ゼロ。

電場ゼロの解を境界条件に

⇒ 解が正しくない!



# グリッドを粗くする方法



マルチグリッドサイクル



Ncycle=2の場合

Matsumoto 2007 MLAT: Multilevel adaptive technique

# セルの間引き方の比較



# 合成グリッドの優位性:少ない演算量



# 自己重力(Multigrid法)の精度

空間2次精度



- Source: binary stars
- Maximum level = 4
- Distribution of blocks is fixed.
- Number of cells inside a block is changed.

101

# おまけ

- ・Block structured gridの場合
  - 。ブロックをノードに割りつける。
  - 。 通信量を少なくするために
    - ・近所のブロックを同じノードに割り付ける。
    - ・近所のブロックを近所のノードに割りつける。





# 並列化: 良くない方法





| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |







8<sup>2</sup>ブロック = 64 ブロック =13 ブロック/ノード×5ノード -1ブロック



同じノードに割り付けら れるブロックが細長く分 布。

通信量は多い

ブロック数・ノード数が 多くなると、不利になる。 泣き別れのブロックなど。

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |





# 並列化: 良い方法







### なるべく近くを通る 一筆書き





# 並列化: 良い方法

8<sup>2</sup>ブロック = 64 ブロック =13 ブロック/ノード×5ノード -1ブロック



同じノードに割り付 けられるブロックが コンパクトに分布。

通信量は少ない。

| 22 | 23 | 26 | 27 | 38 | 39 | 42 | 43 |
|----|----|----|----|----|----|----|----|
| 21 | 24 | 25 | 28 | 37 | 40 | 41 | 44 |
| 20 | 19 | 30 | 29 | 36 | 35 | 46 | 45 |
| 17 | 18 | 31 | 32 | 33 | 34 | 47 | 48 |
| 16 | 13 | 12 | 11 | 54 | 53 | 52 | 49 |
| 15 | 14 | 9  | 10 | 55 | 56 | 51 | 50 |
| 2  | 3  | 8  | 7  | 58 | 57 | 62 | 63 |
| 1  | 4  | 5  | 6  | 59 | 60 | 61 | 64 |

ノード




## 並列化: グリッドレベル横断

ノード

Peano-Hillbert 空間充填曲線 によるオーダリン グ

## なるべく近くを通る 一筆書き

| 10 | 11 | 14 | 15 | 23 | 24 | 27 | 28 |
|----|----|----|----|----|----|----|----|
| 9  | 12 | 13 | 16 | 22 | 25 | 26 | 29 |
| 8  | 7  | 18 | 17 | 21 |    | 31 | 30 |
| 5  | 6  | 19 | 20 |    |    | 32 | 33 |
| 4  |    | 3  |    | 35 |    | 34 |    |
| 1  |    | 2  |    | 37 | 36 | 41 | 42 |
|    |    |    |    | 38 | 39 | 40 | 43 |



= 43 ブロック = 8 ブロック/ノード×5ノード +3ブロック

## 3次元でも同様





2次元のPeano-Hillbert 空間充填曲線

3次元のPeano-Hillbert 空間充填曲線

111

ブロックのオーダリングまとめ

- Peano-Hillbert空間充填曲線によるオーダリングは、面倒そうですが、意外に簡単な工夫です。
- グリッドレベルごとに行う。
  - Adaptive time step
- ・ グリッドレベルを横断して行う。
  - Synchronous time step

僕は使い分けてないけど。。。



袖の転送: ノード間をまとめて転送する



113

