SFUMATO

松本倫明 (法政大学人間環境学部)

我々のAMRコードSFUMATOの紹介

再揭

Self-gravitational Fluid-dyna Utilizing Mesh Adaptive Tec Oct-tree.

- Sfumato は本来、絵画の技 オナルド・ダ・ビンチ (14 1519) によって完成された
- その後、ルネサンスーバロ
 多くの画家に用いられた。
- モチーフの輪郭をぼかし、

空気を表現。

我々のAMRコードも

ガス(空気)を表現。

Matsumotoのアナグラムではない。

AMRコード SFUMATO の構成

利用に際して

- · 再配布禁止
- ・ User-ML に加入すること
- ・ 文献を適切に引用すること
- ・松本を共著に入れるかどうかは、PIの判断に委ねる。
 - 貢献度合いから判断してください。
- (お願い)私と問題が被らないで欲しい。

現在の問題

- Circumbinary disks with MHD simulations
 - 2048 cores (52 nodes); large-a queue; >1 month
 - Calculation on-going
 - MHD version of Matsumoto+ 19
- (Multiple) protostar formation in turbulent cloud cores with resistive MHD simulations
 - 256 cores (7 nodes); bulk-a queue; 3-4 moths
 - Calculation on-going
 - Long-term and multiple-stars version of Matsumoto+ 17
- Dynamical models of heliosphere with MHD simulations;
 - 2048 cores (52 nodes); large-a queue; 2 months
 - Publication: Matsumoto et al. Journal of Physics 1225 (1), article id. 012008 (2019) (*refereed*).

・コンパイラ

- Intel fortran 推奨
- GNU fortran もサポート
- ◎ MPI 必須
- ・可視化
 - Python/Matplotlib
 - XDMF 形式 (Paraview 推奨, visitも可)
 - IDL (obsolete)

SFUMATOは Type B (八分木ブロック構造格 子)

Matsumoto 2007 doi:10.1093/pasj/59.5.905

袖の転送: ノード間をまとめて転送する

9

出力:outputdata.F90

•	AMRデータ AMR階層格子の全データ ファイル名:st ステップ数.ノード番号.d dump ノード番号.d ヘシンボリックリンク io.dumpdata()	初期条件、リスタート AMRグリッド構造を可視化
•	ー様格子(領域指定) AMR階層格子をリマップ ファイル名(バイナリデータ): ug ステップ数 . グリッドレベル .d ファイル名(3D可視化用): ug ステップ数 . グリッドレベル .xdmf uniformgrid.uniformgrid_write()	解析・可視化 位置を決め打ち
•	ー様格子(全領域) AMR階層格子をリマップ uniformgrid_write()の wrapper writeSnap.writeSnap_whole()	解析・可視化
•	ー様格子(ピーク密度周辺) AMR階層格子をリマップ uniformgrid_write()の wrapper writeSnap.writeSnap_denseRegion(radius, prefix)	解析・可視化
•	ー様格子(複数のシンク粒子・高密度領域周辺) AMR階層格子をリマップ uniformgrid_write()の wrapper ファイル名(バイナリデータ): cl. 領域番号.ステップ数.グリッドレベル.d ファイル名(3D可視化用): cl. 領域番号.ステップ数.グリッドレベル.xdmf writeSnap.writeSnap_clusters(radius, prefix)	解析・可視化 連星形成など

出力:uniformgrid_write

uniformgrid_write(xmin, ymin, zmin, xmax, ymax, zmax, res_level)

出力:writeSnap_clusters

writeSnap_clusters(radius, prefix=prefix)

Gas around 4 sink particles are exported to two uniform grids.

使用上の注意:その他

- 自己重力AMRでは
 - 時間空間2次精度を推奨
 - 空間3次はSMRでの使用を推奨
- ・ 陰解法
 - ◎ オーム散逸以外は使用を推奨しない
- ・ シンク粒子
 - ◎ ACCRETION_RHOCR を推奨
 - MOMENTUM_CONSERVATION は問題依存
 - シンク粒子生成条件は ad-hoc 。用途に応じて改良の余地あり
- ・ コア数(めやす)
 - > 2000コア: w/o multigrid
 - 512コア: w/ multigrid